Continuous Bernoulli distribution
| Continuous Bernoulli distribution | |||
|---|---|---|---|
|
Probability density function | |||
| Parameters | , natural parameter | ||
| Support | |||
|
where | |||
| CDF | |||
| Mean | |||
| Variance | |||
In probability theory, statistics, and machine learning, the continuous Bernoulli distribution[1][2][3] is a family of continuous probability distributions parameterized by a single shape parameter , defined on the unit interval , by:
The continuous Bernoulli distribution arises in deep learning and computer vision, specifically in the context of variational autoencoders,[4][5] for modeling the pixel intensities of natural images. As such, it defines a proper probabilistic counterpart for the commonly used binary cross entropy loss, which is often applied to continuous, -valued data.[6][7][8][9] This practice amounts to ignoring the normalizing constant of the continuous Bernoulli distribution, since the binary cross entropy loss only defines a true log-likelihood for discrete, -valued data.
The continuous Bernoulli also defines an exponential family of distributions. Writing for the natural parameter, the density can be rewritten in canonical form: . [10]
Statistical inference
[edit]Given an independent sample of points with from continuous Bernoulli, the log-likelihood of the natural parameter is
and the maximum likelihood estimator of the natural parameter is the solution of , that is, satisfies
where the left hand side is the expected value of continuous Bernoulli with parameter . Although does not admit a closed-form expression, it can be easily calculated with numerical inversion.
Further properties
[edit]The entropy of a continuous Bernoulli distribution is
Related distributions
[edit]Bernoulli distribution
[edit]The continuous Bernoulli can be thought of as a continuous relaxation of the Bernoulli distribution, which is defined on the discrete set by the probability mass function:
where is a scalar parameter between 0 and 1. Applying this same functional form on the continuous interval results in the continuous Bernoulli probability density function, up to a normalizing constant.
Uniform distribution
[edit]The Uniform distribution between the unit interval [0,1] is a special case of continuous Bernoulli when or .
Exponential distribution
[edit]An exponential distribution with rate restricted to the unit interval [0,1] corresponds to a continuous Bernoulli distribution with natural parameter .
Continuous categorical distribution
[edit]The multivariate generalization of the continuous Bernoulli is called the continuous-categorical.[11]
References
[edit]- ^ Loaiza-Ganem, G., & Cunningham, J. P. (2019). The continuous Bernoulli: fixing a pervasive error in variational autoencoders. In Advances in Neural Information Processing Systems (pp. 13266-13276).
- ^ PyTorch Distributions. https://pytorch.org/docs/stable/distributions.html#continuousbernoulli
- ^ Tensorflow Probability. https://www.tensorflow.org/probability/api_docs/python/tfp/edward2/ContinuousBernoulli Archived 2020-11-25 at the Wayback Machine
- ^ Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.
- ^ Kingma, D. P., & Welling, M. (2014, April). Stochastic gradient VB and the variational auto-encoder. In Second International Conference on Learning Representations, ICLR (Vol. 19).
- ^ Larsen, A. B. L., Sønderby, S. K., Larochelle, H., & Winther, O. (2016, June). Autoencoding beyond pixels using a learned similarity metric. In International conference on machine learning (pp. 1558-1566).
- ^ Jiang, Z., Zheng, Y., Tan, H., Tang, B., & Zhou, H. (2017, August). Variational deep embedding: an unsupervised and generative approach to clustering. In Proceedings of the 26th International Joint Conference on Artificial Intelligence (pp. 1965-1972).
- ^ PyTorch VAE tutorial: https://github.com/pytorch/examples/tree/master/vae.
- ^ Keras VAE tutorial: https://blog.keras.io/building-autoencoders-in-keras.html.
- ^ Lee, C. J.; Dahl, B. K.; Ovaskainen, O.; Dunson, D. B. (2025). Scalable and robust regression models for continuous proportional data. arXiv preprint arXiv:2504.15269. https://arxiv.org/abs/2504.15269
- ^ Gordon-Rodriguez, E., Loaiza-Ganem, G., & Cunningham, J. P. (2020). The continuous categorical: a novel simplex-valued exponential family. In 36th International Conference on Machine Learning, ICML 2020. International Machine Learning Society (IMLS).