Wave surface
Appearance
(Redirected from Fresnel's elasticity surface)
In mathematics, Fresnel's wave surface, found by Augustin-Jean Fresnel in 1822, is a quartic surface describing the propagation of light in an optically biaxial crystal. Wave surfaces are special cases of tetrahedroids which are in turn special cases of Kummer surfaces.
In projective coordinates (w:x:y:z) the wave surface is given by
They are used in the treatment of conical refractions.

References
[edit]- Bateman, H. (1910), "Kummer's quartic surface as a wave surface.", Proceedings of the London Mathematical Society, 8 (1): 375â382, doi:10.1112/plms/s2-8.1.375, ISSN 0024-6115
- Cayley, Arthur (1846), "Sur la surface des ondes", Journal de MathĂ©matiques Pures et AppliquĂ©es, 11: 291â296, Collected papers vol 1 pages 302â305
- Fresnel, A. (1822), "Second supplĂ©ment au mĂ©moire sur la double rĂ©fraction" (signed 31 March 1822, submitted 1 April 1822), in H. de SĂ©narmont, Ă. Verdet, and L. Fresnel (eds.), Oeuvres complĂštes d'Augustin Fresnel, Paris: Imprimerie ImpĂ©riale (3 vols., 1866â70), vol. 2 (1868), pp. 369â442, especially pp. 369 (date prĂ©sentĂ©), 386â8 (eq. 4), 442 (signature and date).
- Knörrer, H. (1986), "Die Fresnelsche WellenflĂ€che", Arithmetik und Geometrie, Math. Miniaturen, vol. 3, Basel, Boston, Berlin: BirkhĂ€user, pp. 115â141, ISBN 978-3-7643-1759-1, MR 0879281
- Love, A. E. H. (2011) [1927], A treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, ISBN 978-0-486-60174-8, MR 0010851