🇮🇷 Iran Proxy | https://www.wikipedia.org/wiki/Poly-Bernoulli_numbers
Jump to content

Poly-Bernoulli number

From Wikipedia, the free encyclopedia
(Redirected from Poly-Bernoulli numbers)

In mathematics, poly-Bernoulli numbers, denoted as is an integer sequence. [1]

Definition

[edit]

It was defined by Kaneko as:

where Li is the polylogarithm. The are the usual Bernoulli numbers.

Moreover, the Generalization of Poly-Bernoulli numbers with a,b,c parameters defined as follows

where Li is the polylogarithm.

Combinatorial interpretation

[edit]

Kaneko also gave two combinatorial formulas:

where is the number of ways to partition a size set into non-empty subsets (the Stirling number of the second kind).

A combinatorial interpretation is that the poly-Bernoulli numbers of negative index enumerate the set of by (0,1)-matrices uniquely reconstructible from their row and column sums. Also it is the number of open tours by a biased rook on a board (see A329718 for definition).

The Poly-Bernoulli number satisfies the following asymptotic:[2]

For a positive integer n and a prime number p, the poly-Bernoulli numbers satisfy

which can be seen as an analog of Fermat's little theorem. Further, the equation

has no solution for integers x, y, z, n > 2; an analog of Fermat's Last Theorem. Moreover, there is an analogue of Poly-Bernoulli numbers (like Bernoulli numbers and Euler numbers) which is known as Poly-Euler numbers.

See also

[edit]

References

[edit]
  1. ^ Kaneko, Masanobu (1997), "Poly-Bernoulli numbers", Journal de Théorie des Nombres de Bordeaux, 9 (1): 221–228, doi:10.5802/jtnb.197, hdl:2324/21658, MR 1469669
  2. ^ Khera, J.; Lundberg, E.; Melczer, S. (2021), "Asymptotic Enumeration of Lonesum Matrices", Advances in Applied Mathematics, 123 (4) 102118, arXiv:1912.08850, doi:10.1016/j.aam.2020.102118, S2CID 209414619.