đŸ‡źđŸ‡· Iran Proxy | https://www.wikipedia.org/wiki/Leonardo_polyhedron
Jump to content

Leonardo polyhedron

From Wikipedia, the free encyclopedia
Rhombicuboctahedron, one of the Leonardo da Vinci's geometrical shapes illustration in 1509 Divina proportione.

A Leonardo polyhedron is a polyhedron with a Platonic solid's rotational symmetry and genus . Here, a polyhedron is the unbounded 2-manifold embedded in three-dimensional Euclidean space. The polyhedron is named after Leonardo da Vinci, who illustrated geometrical shapes in Luca Pacioli's De divina proportione in three phases: drawing Platonic solids and Archimedean solids; replacing the edges of those solids by struts, forming a convex polygon, and this results in the first polyhedron with many genera; and placing each hole with the skeleton of a pyramid.[1]

Alicia Boole Stott discovered the first regular Leonardo polyhedron (its property has transitivity by the set consisting of vertex, edge, and face of a polyhedron). Similar to Leonardo's work, she began the construction with a four-dimensional polytope, projecting to a Schlegel diagram, and replacing its edges with quadrilateral-shaped struts.[2] Coxeter later discovered the regular skew polyhedron.[3] Felix Klein discovered the three genera.[4] Together with Robert Fricke, they found the five genera of Leonardo polyhedra.[5] Some colleagues further discovered the locally regular and the genus up to 14.[6]

Footnotes

[edit]

References

[edit]
  • Bokowski, JĂŒrgen (2022). "Regular Leonardo polyhedra". The Art of Discrete and Applied Mathematics. 5 (3). doi:10.26493/2590-9770.1535.8ad.
  • Bokowski, JĂŒrgen; H., Kevin (2025). "Polyhedral Embeddings of Triangular Regular Maps of Genus , , and Neighborly Spatial Polyhedra". Symmetry. 17 (4). doi:10.3390/sym17040622.
  • GĂ©vay, GĂĄbor; Wills, Jörg M. (2013). "On regular and equivelar Leonardo polyhedra". Ars Mathematica Contemporanea. 6 (1): 1–11. doi:10.26493/1855-3974.219.440.
  • Coxeter, H. S. M. (1937). "Regular skew polyhedra in three and four dimensions and their topological analogues". Proceedings of the London Mathematical Society. s2-43 (1): 33–62. doi:10.1112/plms/s2-43.1.33.
  • Klein, Felix (1879). "Über die transformationen siebenter ordnung der elliptischen functionen". Mathematische Annalen. 14 (428–471).
  • Klein, Felix (1884). Vorlesungen ĂŒber das Ikosaeder und die Auflösung der Gleichungen vom fĂŒnften. Teubner.
  • Klein, Felix; Fricke, Robert (1890). Vorlesungen ĂŒber die Theorie der elliptischen Modulfunktionen. Teubner.
  • Stott, Alicia Boole (1910). "Geometrical deduction of semiregular from regular polytopes and space fillings". Amst. Ak. Versl. 19: 3–8.

Further reading

[edit]